Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2010 Jul 1;343(1-2):28-39. doi: 10.1016/j.ydbio.2010.04.007. Epub 2010 Apr 14.

Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head.

Author information

  • 1Department of Biochemistry and Molecular Biology, Norris Cancer Hospital, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA.

Abstract

In an effort to understand the morphogenetic forces that shape the bones of the skull, we inactivated Msx1 and Msx2 conditionally in neural crest. We show that Wnt1-Cre inactivation of up to three Msx1/2 alleles results in a progressively larger defect in the neural crest-derived frontal bone. Unexpectedly, in embryos lacking all four Msx1/2 alleles, the large defect is filled in with mispatterned bone consisting of ectopic islands of bone between the reduced frontal bones, just anterior to the parietal bones. The bone is derived from neural crest, not mesoderm, and, from DiI cell marking experiments, originates in a normally non-osteogenic layer of cells through which the rudiment elongates apically. Associated with the heterotopic osteogenesis is an upregulation of Bmp signaling in this cell layer. Prevention of this upregulation by implantation of noggin-soaked beads in head explants also prevented heterotopic bone formation. These results suggest that Msx genes have a dual role in calvarial development: They are required for the differentiation and proliferation of osteogenic cells within rudiments, and they are also required to suppress an osteogenic program in a cell layer within which the rudiments grow. We suggest that the inactivation of this repressive activity may be one cause of Wormian bones, ectopic bones that are a feature of a variety of pathological conditions in which calvarial bone development is compromised.

Copyright 2010 Elsevier Inc. All rights reserved.

PMID:
20398647
[PubMed - indexed for MEDLINE]
PMCID:
PMC3279331
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk