Format

Send to:

Choose Destination
See comment in PubMed Commons below
Vet Microbiol. 2010 Oct 26;145(3-4):273-8. doi: 10.1016/j.vetmic.2010.03.019. Epub 2010 Mar 27.

Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry.

Author information

  • 1Department of Bacteriology and TSEs, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands. Cindy.Dierikx@wur.nl

Abstract

To gain more information on the genetic basis of the rapid increase in the number of isolates exhibiting non-wild type Minimum Inhibitory Concentrations (MICs) for cefotaxime observed since 2003, beta-lactamase genes of 22 Salmonella enterica and 22 Escherichia coli isolates from broilers in 2006 showing this phenotype were characterized by miniaturized micro-array, PCR and DNA-sequencing. Presence and size of plasmids were determined by S1-digest pulsed-field gel electrophoresis and further characterized by PCR-based replicon typing. Transfer of resistance plasmids was tested by conjugation and transformation experiments. To link resistance genes and plasmid type, Southern blot hybridization experiments were conducted. In 42 isolates, five (bla(CTX-M-1), bla(CTX-M-2), bla(TEM-20), bla(TEM-52), bla(SHV-2)) different extended spectrum beta-lactamase (ESBL)-genes and two (bla(ACC-1), bla(CMY-2)) AmpC-genes were present. Three of the detected ESBL-genes (bla(CTX-M-1), bla(TEM-52) and bla(CTX-M-2)) were located on similar types of plasmids (IncI1 and IncHI2/P) in both E. coli and Salmonella. Two other detected ESBL- and AmpC-genes bla(SHV-2) and bla(CMY-2) respectively (on IncK plasmids), were only found in E. coli, whereas the AmpC-gene bla(ACC-1) (on non-typable plasmids), and the ESBL-gene bla(TEM-20) (on IncI1 plasmids), were only detected in Salmonella. In two isolates, no ESBL- or AmpC-gene could be detected through these methods. The increase in the number of E. coli and S. enterica isolates from the gastro-intestinal tract of broilers exhibiting non-wild type MICs for cefotaxime is mainly due to an increase in IncI1 plasmids containing bla(CTX-M-1). The reason for the successful spread of this plasmid type in these species is not yet understood.

Copyright © 2010 Elsevier B.V. All rights reserved.

PMID:
20395076
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk