Format

Send to:

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2010 May 17;49(10):4543-53. doi: 10.1021/ic100075k.

Acid-base mechanism for ruthenium water oxidation catalysts.

Author information

  • 1Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

Abstract

We present a detailed theoretical study of the pathway for water oxidation in synthetic ruthenium-based catalysts. As a first step, we consider a recently discovered single center catalyst, where experimental observations suggest a purely single-center mechanism. We find low activation energies (<5 kcal/mol) for each rearrangement in the catalytic cycle. In the crucial step of O-O bond formation, a solvent water acts as a Lewis base and attacks a highly oxidized Ru(V)=O. Armed with the structures and energetics of the single-center catalyst, we proceed to consider a representative Ru-dimer which was designed to form O(2) via coupling between the two centers. We discover a mechanism that proceeds in analogous fashion to the monomer case, with all the most significant steps occurring at a single catalytic center within the dimer. This acid-base mechanism suggests a new set of strategies for the rational design of multicenter catalysts: rather than coordinating the relative orientations of the subunits, one can focus on coordinating solvation-shell water molecules or tuning redox potentials.

PMID:
20394383
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk