Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2010 May 1;44(9):3381-7. doi: 10.1021/es903582n.

Modeling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon.

Author information

  • 1School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, England, UK.

Abstract

Activated carbon (AC) amendment is currently being investigated as an in situ remediation technique for sediments contaminated by persistent organic pollutants. Understanding the mass transfer of pollutants from weaker binding sites on sediment particles, to stronger binding sites inside AC particles, is important for the evaluation of this strategy. Here we study the mass transfer of polycyclic aromatic hydrocarbons (PAHs) from River Tyne sediment to polyethylene (PE) passive samplers in the presence and absence of AC under two mixing regimes. Continuously mixing and a brief initial mixing period to incorporate AC to the system, followed by unmixed conditions in settled sediments, were compared. The reduction in total PAH concentration in the PE sampler was greater than 99% after 12 months AC contact for both conditions. A numerical model based on concepts used to simulate well-mixed AC-sediment slurries was further developed to describe the briefly mixed system. These models could predict upper and lower limits for the expected remediation effectiveness for variable AC-sediment mixing regimes. It appears that mixing mode has a small impact on the treatment effectiveness for River Tyne sediment which has a strongly bound, slowly released pollutant source. However, a greater impact is anticipated for contaminated sediments containing more available pollutants.

PMID:
20392086
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk