Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nat Med. 2010 Apr;16(4):438-45. doi: 10.1038/nm.2121. Epub 2010 Mar 28.

A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response.

Author information

  • 1Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.

Abstract

Class Ia phosphoinositide 3-kinase (PI3K), an essential mediator of the metabolic actions of insulin, is composed of a catalytic (p110alpha or p110beta) and regulatory (p85alphaalpha, p85betaalpha or p55alpha) subunit. Here we show that p85alphaalpha interacts with X-box-binding protein-1 (XBP-1), a transcriptional mediator of the unfolded protein response (UPR), in an endoplasmic reticulum (ER) stress-dependent manner. Cell lines with knockout or knockdown of p85alphaalpha show marked alterations in the UPR, including reduced ER stress-dependent accumulation of nuclear XBP-1, decreased induction of UPR target genes and increased rates of apoptosis. This is associated with a decreased activation of inositol-requiring protein-1alpha (IRE1alpha) and activating transcription factor-6alphaalpha (ATF6alpha). Mice with deletion of p85alpha in liver (L-Pik3r1(-/-)) show a similar attenuated UPR after tunicamycin administration, leading to an increased inflammatory response. Thus, p85alphaalpha forms a previously unrecognized link between the PI3K pathway, which is central to insulin action, and the regulation of the cellular response to ER stress, a state that when unresolved leads to insulin resistance.

Comment in

PMID:
20348923
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk