Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2009 Aug 15;81(16):6676-86. doi: 10.1021/ac900746x.

Dynamics of molecular impacts on soft materials: from fullerenes to organic nanodrops.

Author information

  • 1Unité PCPM, Université Catholique de Louvain, 1 Croix du Sud, B-1348, Louvain-la-Neuve, Belgium. arnaud.delcorte@uclouvain.be

Abstract

The present theoretical study explores the interaction of various energetic molecular projectiles and clusters with a model polymeric surface, with direct implications for surface analysis by mass spectrometry. The projectile sizes (up to 23 kDa) are intermediate between the polyatomic ions (SF(5), C(60)) used in secondary ion mass spectrometry and the large organic microdroplets generated, for example, in desorption electrospray ionization. The target is a model of amorphous polyethylene, already used in a previous study [Delcorte, A.; Garrison, B. J. J. Phys. Chem. C 2007, 111, 15312]. The chosen method relies on classical molecular dynamics (MD) simulations, using a coarse-grained description of polymeric samples for high energy or long time calculations (20-50 ps) and a full atomistic description for low energy or short time calculations (<1 ps). Two regions of sputtering or desorption are observed depending on the projectile energy per nucleon (i.e., effectively the velocity). The transition, occurring around 1 eV/nucleon, is identified by a change of slope in the curve of the sputtering yield per nucleon vs energy per nucleon. Beyond 1 eV/nucleon, the sputtering yield depends only on the total projectile energy and not on the projectile nuclearity. Below 1 eV/nucleon, i.e., around the sputtering threshold for small projectiles, yields are influenced by both the projectile energy and nuclearity. Deposition of intact molecular clusters is also observed at the lowest energies per nucleon. The transition in the sputtering curve is connected to a change of energy deposition mechanisms, from atomistic and mesoscopic processes to hydrodynamic flow. It also corresponds to a change in terms of fragmentation. Below 1 eV/nucleon, the projectiles are not able to induce bond scissions in the sample. This region of molecular emission with minimal fragmentation offers new analytical perspectives, out of reach of smaller molecular clusters such as fullerenes.

PMID:
20337378
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk