Display Settings:


Send to:

Choose Destination
Tree Physiol. 2010 May;30(5):586-96. doi: 10.1093/treephys/tpq009. Epub 2010 Mar 23.

Inter- and intra-specific variation in nocturnal water transport in Eucalyptus.

Author information

  • 1Centre for Plants and the Environment, University of Western Sydney, Richmond, NSW 2753, Australia. nathan@bu.edu


To identify environmental and biological drivers of nocturnal vapour exchange, we quantified intra-annual, intra- and inter-specific variation in nocturnal water transport among ecologically diverse Eucalyptus species. We measured sap flux (J(s)) and leaf physiology (leaf surface conductance (g(s)), transpiration (E) and water potential (Psi(l))) in three to five trees of eight species. Over 1 year, nocturnal J(s) (J(s,n)) contributed 5-7% of total J(s) in the eight species. The principal environmental driver of J(s,n) was the product of atmospheric vapour pressure deficit (D) and wind speed (U). Selected observations suggest that trees with higher proportions of young foliage may exhibit greater J(s,n) and nocturnal g(s) (g(s,n)). Compared with other tree taxa, nocturnal water use in Eucalyptus was relatively low and more variable within than between species, suggesting that (i) Eucalyptus as a group exerts strong nocturnal stomatal control over water loss and (ii) prediction of nocturnal flux in Eucalyptus may depend on simultaneous knowledge of intra-specific tree traits and nocturnal atmospheric conditions.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk