Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 1991 May 25;266(15):9408-12.

Conformation of one- and two-chain high molecular weight urokinase analyzed by small-angle neutron scattering and vacuum ultraviolet circular dichroism.

Author information

  • 1Biology Department, Brookhaven National Laboratory, Upton, New York 11973.

Abstract

The structures of one- and two-chain high molecular weight human urokinase were analyzed by small-angle neutron scattering and vacuum ultraviolet circular dichroism. Both one- and two-chain high molecular weight urokinases exhibited a radius of gyration of 31 A and a maximum dimension of 90 A. Neither parameter was affected by the presence of lysine sufficient to saturate all the lysine-binding sites in human plasminogen. These physical parameters are consistent with the sedimentation coefficient of high molecular weight urokinase and indicate that both proteins are highly asymmetric. Neither protein contained much alpha-helix or parallel beta-sheet. Most of the secondary structure was in the form of antiparallel beta-sheet and beta-turns, very similar to the secondary structure of plasminogen. The macroscopic kinetic constants, Km and kcat, for the hydrolysis of (pyroGlu-Gly-Arg-NH)2-rhodamine by two-chain high molecular weight urokinase and low molecular weight urokinase which lacks the epidermal growth factor and kringle domains were similar. These structural and kinetic data are consistent with the domains in both forms of urokinase being independent structural and functional units.

PMID:
2033041
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk