Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1991 Apr 25;19(8):1805-10.

Physical properties of oligonucleotides containing phosphoramidate-modified internucleoside linkages.

Author information

  • 1Department of Biochemistry, University of Iowa, Iowa City 52242.

Abstract

Because of their nuclease resistance and ability to form substrates for RNase H, antisense oligodeoxynucleotides (ODNs) possessing several methoxyethylphosphoramidate linkages at both termini have proven effective at targeting the degradation of specific mRNAs in Xenopus embryos. The efficacy of these compounds subsequently observed in tissue culture focused our attention on the issue of cellular uptake. To investigate the extent to which phosphate backbone modifications may increase the lipophilicity of ODNs, and thereby increase passive uptake by cells, the partitioning of a series of phosphoramidate-modified compounds between aqueous and organic phases was examined. The octanol:water partition coefficient of an unmodified, mixed-sequence 16-mer was 1.75 x 10(-5). The log of the partition coefficient increased in a sigmoidal manner with the number of methoxyethylphosphoramidate internucleoside linkages, indicating a nonlinear free energy relationship. The highest level of partitioning demonstrated was approximately 4 x 10(-3) (a 230-fold increase), attained when 11 of the 15 phosphodiesters were modified. An increase in hydrophobicity was also attained with C8 and C10 alkylamines acting as phase-transfer agents. The melting temperatures of heteroduplexes formed between a phosphoramidate-modified ODN and a complementary unmodified DNA strand decreased by approximately 1.5 degrees C for every phosphate group modification. ODNs can thus be extensively derivatized without substantially compromising duplex formation under physiological conditions.

PMID:
2030962
[PubMed - indexed for MEDLINE]
PMCID:
PMC328108
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk