Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Clin Cancer Res. 2010 Apr 1;16(7):2076-84. doi: 10.1158/1078-0432.CCR-09-3277. Epub 2010 Mar 16.

In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762.

Author information

  • 1Radiation Biology and Radiation Oncology Branches, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. jbm@helix.nih.gov

Abstract

PURPOSE:

Inhibition of checkpoint kinase 1 has been shown to enhance the cytotoxicity of DNA-damaging targeted chemotherapy through cell cycle checkpoint abrogation and impaired DNA damage repair. A novel checkpoint kinase 1/2 inhibitor, AZD7762, was evaluated for potential enhancement of radiosensitivity for human tumor cells in vitro and in vivo xenografts.

EXPERIMENTAL DESIGN:

Survival of both p53 wild-type and mutant human cell lines was evaluated by clonogenic assay. Dose modification factors (DMF) were determined from survival curves (ratio of radiation doses for control versus drug treated at 10% survival). Flow cytometry, Western blot, and radiation-induced tumor regrowth delay assays were conducted.

RESULTS:

AZD7762 treatment enhanced the radiosensitivity of p53-mutated tumor cell lines (DMFs ranging from 1.6-1.7) to a greater extent than for p53 wild-type tumor lines (DMFs ranging from 1.1-1.2). AZD7762 treatment alone exhibited little cytotoxicity to any of the cell lines and did not enhance the radiosensitivity of normal human fibroblasts (1522). AZD7762 treatment abrogated radiation-induced G(2) delay, inhibited radiation damage repair (assessed by gamma-H2AX), and suppressed radiation-induced cyclin B expression. HT29 xenografts exposed to five daily radiation fractions and to two daily AZD7762 doses exhibited significant radiation enhancement compared with radiation alone.

CONCLUSIONS:

AZD7762 effectively enhanced the radiosensitivity of mutated p53 tumor cell lines and HT29 xenografts and was without untoward toxicity when administered alone or in combination with radiation. The results of this study support combining AZD7762 with radiation in clinical trials.

Copyright 2010 AACR.

PMID:
20233881
[PubMed - indexed for MEDLINE]
PMCID:
PMC2851146
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk