Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Hered. 2010 May-Jun;101(3):360-7. doi: 10.1093/jhered/esq023. Epub 2010 Mar 16.

Genomic analysis of variation in hindlimb musculature of mice from the C57BL/6J and DBA/2J lineage.

Author information

  • 1School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK. a.lionikas@abdn.ac.uk

Abstract

The precise locations of attachment points of muscle to bone-the origin and insertion sites-are crucial anatomical and functional characteristics that influence locomotor performance. Mechanisms that control the development of these interactions between muscle, tendon, and bone are currently not well understood. In a subset of BXD recombinant inbred (RI) strains derived from the C57BL/6J and DBA/2J strains, we observed a soleus femoral attachment anomaly (SFAA) that was rare in both parental strains (Lionikas, Glover et al. 2006). The aim of the present study was to assess suitability of SFAA as a model to study the genetic mechanisms underlying variation in musculoskeletal anatomy. We scored the incidence of SFAA in 55 BXD strains (n = 9 to 136, median = 26, phenotyped animals per strain, for a total number of 2367). Seven strains (BXD1, 12, 38, 43, 48, 54, and 56) exhibited a high incidence of unilateral SFAA (47-89%), whereas 23 strains scored 0%. Exploration of the mechanisms underlying SFAA in 2 high incidence strains, BXD1 and BXD38, indicated that SFAA-relevant genes are to be found in both C57BL/6J and DBA/2J regions of the BXD1 genome. However, not all alleles relevant for the expression of the phenotype were shared between the 2 high-incidence BXD strains. In conclusion, the anatomical origin of the soleus muscle in mouse is controlled by a polygenic system. A panel of BXD RI strains is a useful tool in exploring the genetic mechanisms underlying SFAA and improving our understanding of musculoskeletal development.

PMID:
20233743
[PubMed - indexed for MEDLINE]
PMCID:
PMC2855676
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk