Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2010 Mar 10;30(10):3675-88. doi: 10.1523/JNEUROSCI.5673-09.2010.

Acute polyglutamine expression in inducible mouse model unravels ubiquitin/proteasome system impairment and permanent recovery attributable to aggregate formation.

Author information

  • 1Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid and CiberNed, Madrid, Spain.

Abstract

The presence of intracellular ubiquitylated inclusions in neurodegenerative disorders and the role of the ubiquitin/proteasome system (UPS) in degrading abnormal hazardous proteins have given rise to the hypothesis that UPS-impairment underlies neurodegenerative processes. However, this remains controversial for polyglutamine disorders such as Huntington disease (HD). Whereas studies in cellular models have provided evidence in favor of UPS-impairment attributable to expression of the N-terminal fragment of mutant huntingtin (N-mutHtt), similar studies on mouse models failed to do so. Furthermore, we have recently shown that the increase in polyubiquitin conjugates reported in the brain of N-mutHtt mice occurs in the absence of a general UPS-impairment. In the present study we aim to clarify the potential of N-mutHtt to impair UPS function in vivo as well as the mechanisms by which neurons may adapt after prolonged exposure to N-mutHtt in genetic models. By combining UPS reporter mice with an inducible mouse model of HD, we demonstrate for the first time polyglutamine-induced global UPS-impairment in vivo. UPS-impairment occurred transiently after acute N-mutHtt expression and restoration correlated with appearance of inclusion bodies (IBs). Consistently, UPS recovery did not take place when IB formation was prevented through administration of N-mutHtt aggregation-inhibitors in both cellular and animal models. Finally, no UPS-impairment was detected in old mice constitutively expressing N-mutHtt despite the age-associated decrease in brain proteasome activity. Therefore, our data reconcile previous contradictory reports by showing that N-mutHtt can indeed impair UPS function in vivo and that N-mutHtt aggregation leads to long lasting restoration of UPS function.

PMID:
20220001
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk