Send to:

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2010 Apr 14;10(4):1398-404. doi: 10.1021/nl100199h.

Probing a century old prediction one plasmonic particle at a time.

Author information

  • 1Department of Chemistry, Rice University, Houston, Texas 77005, USA.


In 1908, Gustav Mie solved Maxwell's equations to account for the absorption and scattering of spherical plasmonic particles. Since then much attention has been devoted to the size dependent optical properties of metallic nanoparticles. However, ensemble measurements of colloidal solutions generally only yield the total extinction cross sections of the nanoparticles. Here, we show how Mie's prediction on the size dependence of the surface absorption and scattering can be probed separately for the same gold nanoparticle by using two single particle spectroscopy techniques, (1) dark-field scattering and (2) photothermal imaging, which selectively only measure scattering and absorption, respectively. Combining the optical measurements with correlated scanning electron microscopy furthermore allowed us to measure the size of the spherical gold nanoparticles, which ranged from 43 to 274 nm in diameter. We found that even though the trend predicted by Mie theory is followed well by the experimental data over a large range of nanoparticle diameters, for small size variations changes in scattering and absorption intensities are dominated by factors other than those considered by Mie theory. In particular, spectral shifts of the plasmon resonance due to deviations from a spherical particle shape alone cannot explain the observed variation in absorption and scattering intensities.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk