Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5254-9. doi: 10.1073/pnas.0914114107. Epub 2010 Mar 1.

Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing.

Author information

  • 1Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. Jiaqian2009.wu@gmail.com

Abstract

To examine the fundamental mechanisms governing neural differentiation, we analyzed the transcriptome changes that occur during the differentiation of hESCs into the neural lineage. Undifferentiated hESCs as well as cells at three stages of early neural differentiation-N1 (early initiation), N2 (neural progenitor), and N3 (early glial-like)-were analyzed using a combination of single read, paired-end read, and long read RNA sequencing. The results revealed enormous complexity in gene transcription and splicing dynamics during neural cell differentiation. We found previously unannotated transcripts and spliced isoforms specific for each stage of differentiation. Interestingly, splicing isoform diversity is highest in undifferentiated hESCs and decreases upon differentiation, a phenomenon we call isoform specialization. During neural differentiation, we observed differential expression of many types of genes, including those involved in key signaling pathways, and a large number of extracellular receptors exhibit stage-specific regulation. These results provide a valuable resource for studying neural differentiation and reveal insights into the mechanisms underlying in vitro neural differentiation of hESCs, such as neural fate specification, neural progenitor cell identity maintenance, and the transition from a predominantly neuronal state into one with increased gliogenic potential.

PMID:
20194744
[PubMed - indexed for MEDLINE]
PMCID:
PMC2841935
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk