Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Cycle. 2010 Mar 15;9(6):1091-6. Epub 2010 Mar 15.

The AMPK-FoxO3A axis as a target for cancer treatment.

Author information

  • 1Laboratory of Signal-dependent Transcription; Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy.

Abstract

FoxO proteins are an evolutionarily conserved subfamily of transcription factors involved in tumor suppression, regulation of energy metabolism and development in several tissues, and are mainly regulated by phosphorylation-dependent nuclear/cytoplasmic shuttling. The transcriptional activity of FoxO3A, one of the four members of the family, is further modulated by AMPK, one of the key regulators of cellular metabolism, which basically shifts cell machinery from energy-consuming to energy-producing pathways. We recently demonstrated that the AMPK/FoxO3A energy sensor pathway is still inducible in human cancer cells in response to metabolic stress, as it becomes activated in colorectal and ovarian cancer cells in response to the inhibition of p38α. Activation of the FoxO3A transcriptional program initially induces autophagy as an attempt to retain energy to survive, whereas under persistent stress conditions it triggers autophagic cell death. In this review, we focus on the connections between AMPK and FoxO3A, describing their central role as modulators of fundamental processes such as stress resistance, cell metabolism, autophagy and cell death, and highlighting the therapeutic potential of pharmacological modulation of the AMPK-FoxO3A axis.

PMID:
20190568
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Write to the Help Desk