Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Appl Pharmacol. 2010 May 15;245(1):91-9. doi: 10.1016/j.taap.2010.02.007. Epub 2010 Feb 19.

2,3,7,8-tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1.

Author information

  • 1Department of Pharmaceutical Science, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.


Studies in our laboratory have demonstrated that subchronic 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) exposure of adult mice results in hypertension, cardiac hypertrophy, and reduced nitric oxide (NO)-mediated vasodilation. Moreover, increased superoxide anion production was observed in cardiovascular organs of TCDD-exposed mice and this increase contributed to the reduced NO-mediated vasodilation. Since cytochrome P4501A1 (CYP1A1) can contribute to some TCDD-induced toxicity, we tested the hypothesis that TCDD increases reactive oxygen species (ROS) in endothelial cells by the induction of CYP1A1. A concentration-response to 24h TCDD exposure (10pM-10nM) was performed in confluent primary human aortic endothelial cells (HAECs). Oxidant-sensitive fluorescent probes dihydroethidium (DHE) and 2',7'-dichlorofluorescin diacetate (DCFH-DA), were used to measure superoxide anion, and hydrogen peroxide and hydroxyl radical, respectively. NO was also measured using the fluorescent probe diaminofluorescein-2 diacetate (DAF-2DA). These assessments were conducted in HAECs transfected with siRNA targeting the aryl hydrocarbon receptor (AhR), CYP1A1, or CYP1B1. TCDD concentration-dependently increased CYP1A1 and CYP1B1 mRNA, protein, and enzyme activity. Moreover, 1nM TCDD maximally increased DHE (Cont=1.0+/-0.3; TCDD=5.1+/-1.0; p=0.002) and DCFH-DA (Cont=1.0+/-0.2; TCDD=4.1+/-0.5; p=0.002) fluorescence and maximally decreased DAF-2DA fluorescence (Cont=1.0+/-0.4; TCDD=0.68+/-0.1). siRNA targeting AhR and CYP1A1 significantly decreased TCDD-induced DHE (siAhR: Cont=1.0+/-0.1; TCDD=1.3+/-0.2; p=0.093) (siCYP1A1: Cont=1.0+/-0.1; TCDD=1.1+/-0.1; p=0.454) and DCFH-DA (siAhR: Cont=1.0+/-0.2; TCDD=1.3+/-0.3; p=0.370) (siCYP1A1: Cont=1.0+/-0.1; TCDD=1.3+/-0.2; p=0.114) fluorescence and increased DAF-2DA fluorescence (siAhR: Cont=1.00+/-0.03; TCDD=0.97+/-0.03; p=0.481) (siCYP1A1: Cont=1.00+/-0.03; TCDD=0.92+/-0.03; p=0.034), while siRNA targeting CYP1B1 did not. These data suggest that TCDD-induced increase in ROS is AhR-dependent and may be mediated, in part, by CYP1A1 induction.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk