Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Gastrointest Liver Physiol. 2010 Apr;298(4):G535-41. doi: 10.1152/ajpgi.00338.2009. Epub 2010 Feb 18.

MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling.

Author information

  • 1University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.

Abstract

During liver regeneration, normally quiescent liver cells reenter the cell cycle, nonparenchymal and parenchymal cells divide, and proper liver architecture is restored. The gene expression programs regulating these transitions are not completely understood. MicroRNAs are a newly discovered class of small regulatory RNAs that silence messenger RNAs by binding to their 3'-untranslated regions (UTRs). A number of microRNAs, including miR-21, have been shown to be involved in regulation of cell proliferation. We performed partial hepatectomies on mice and allowed the liver to regenerate for 1, 6, 12, 24, and 48 h and 4 and 7 days. We compared the expression of miR-21 in the posthepatectomy liver to the prehepatectomy liver by Northern blot and found that miR-21 was upregulated during the early stages of liver regeneration. NF-kappaB signaling is also activated very early during liver regeneration. It has been previously reported that NF-kappaB upregulates the miR-21 precursor transcript. The predicted miR-21 target, Pellino (Peli1), is a ubiquitin ligase involved in activating NF-kappaB signaling. We observed an inverse correlation between miR-21 and Peli1 mRNA levels during liver regeneration. miR-21 overexpression in cultured cells inhibited a Peli1 3'-UTR luciferase reporter. Using NF-kappaB reporter assays, we determined that miR-21 overexpression inhibits NF-kappaB signaling. In conclusion, miR-21 expression was upregulated during early stages of liver regeneration. Targeting of Peli1 by miR-21 could potentially provide the basis for a negative feedback cycle regulating NF-kappaB signaling.

PMID:
20167875
[PubMed - indexed for MEDLINE]
PMCID:
PMC2853303
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk