Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2010 May;298(5):E978-87. doi: 10.1152/ajpendo.00739.2009. Epub 2010 Feb 16.

Nitration of specific tyrosines in FoF1 ATP synthase and activity loss in aging.

Author information

  • 1University of California, Davis, Department of Molecular Biosciences, 1120 Haring Hall, One Shields Ave., Davis, CA 95616, USA.


It has been reported that C-nitration of proteins occurs under nitrative/oxidative stress; however, its role in pathophysiological situations is not fully understood. In this study, we determined that nitration of Tyr(345) and Tyr(368) in the beta-subunit of the mitochondrial F(o)F(1)-ATPase is a major target for nitrative stress in rat liver under in vivo conditions. The chemical characteristics of these Tyr make them suitable for a facilitated nitration (solvent accessibility, consensus sequence, and pK(a)). Moreover, beta-subunit nitration increased significantly with the age of the rats (from 4 to 80 weeks old) and correlated with decreased ATP hydrolysis and synthesis rates. Although its affinity for ATP binding was unchanged, maximal ATPase activity decreased between young and old rats by a factor of two. These changes directly impacted the available ATP concentration in vivo, and it was expected that they would affect multiple cellular ATP-dependent processes. For instance, at least 50% of available [ATP] in the liver of older rats would have to be committed to sustain maximal Na(+)-K(+)-ATPase activity, whereas only 30% would be required for young rats. If this requirement was not fulfilled, the osmoregulation and Na(+)-nutrient cotransport in liver of older rats would be compromised. On the basis of our studies, we propose that targeted nitration of the beta-subunit is an early marker for nitrative stress and aging.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk