Format

Send to:

Choose Destination
See comment in PubMed Commons below
Toxicol Sci. 2010 May;115(1):140-55. doi: 10.1093/toxsci/kfq045. Epub 2010 Feb 11.

DNA damage and DNA damage responses in THP-1 monocytes after exposure to spores of either Stachybotrys chartarum or Aspergillus versicolor or to T-2 toxin.

Author information

  • 1Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway.

Abstract

We have characterized cell death in THP-1 cells after exposure to heat-treated spores from satratoxin G-producing Stachybotrys chartarum isolate IBT 9631, atranone-producing S. chartarum isolate IBT 9634, and sterigmatocystin-producing Aspergillus versicolor isolate IBT 3781, as well as the trichothecenes T-2 and satratoxin G. Spores induced cell death within 3-6 h, with Stachybotrys appearing most potent. IBT 9631 induced both apoptosis and necrosis, while IBT 9634 and IBT 3781 induced mostly necrosis. T-2 toxin and satratoxin G caused mainly apoptosis. Comet assay +/- formamidopyrimidine DNA glycosylase showed that only the spore exposures induced early (3h) oxidative DNA damage. Likewise, only the spores increased the formation of reactive oxygen species (ROS), suggesting that spores as particles may induce ROS formation and oxidative DNA damage. Increased Ataxia Telangiectasia Mutated (ATM) phosphorylation, indicating DNA damage, was observed after all exposures. The DNA damage response induced by IBT 9631 as well as satratoxin G was characterized by rapid (15 min) activation of p38 and H2AX. The p38 inhibitor SB 202190 reduced IBT 9631-induced H2AX activation. Both IBT 9631 and T-2 induced activation of Chk2 and H2AX after 3 h. The ATM inhibitor KU 55933, as well as transfection of cells with ATM siRNA, reduced this activation, suggesting a partial role for ATM as upstream activator for Chk2 and H2AX. In conclusion, activation of Chk2 and H2AX correlated with spore- and toxin-induced apoptosis. For IBT 9631 and satratoxin G, additional factors may be involved in triggering apoptosis, most notably p38 activation.

PMID:
20150440
[PubMed - indexed for MEDLINE]
PMCID:
PMC2902923
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk