Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Environ Occup Health. 2010 Jan-Mar;65(1):3-11. doi: 10.1080/19338240903390248.

Dampness and 2-ethyl-1-hexanol in floor construction of rehabilitation center: Health effects in staff.

Author information

  • 1Department of Medical Sciences, Uppsala University and the University Hospital of Uppsala University and University Hospital, Sweden. gunilla.wieslander@medsci.uu.se

Abstract

The authors evaluated changes of symptoms and biomarkers in health care staff (N = 18) for people with different physical dysfunctions and similarly in an external office control group in a nondamp building (N = 15). The first workplace had verified dampness in the floor construction, with formation of 2-ethyl-1-hexanol from water-based glue. Tear film break up time (BUT), nasal patency, biomarkers in nasal lavage (NAL), and dynamic spirometry were measured. Both buildings had low indoor air levels of CO2 (510 to 630 ppm), low levels of respirable particles (6 to 7 microg/m3) and formaldehyde (<5 microg/m3), and no indication of microbial growth. Pronounced increase of butanols and 2-ethyl-1-hexanol levels were found in the damp floor material samples, but very low air levels of 2-ethyl-1-hexanol. The staff had been previously exposed to floor construction with alkaline degradation of floor glue, as well as formation of 2-ethyl-1-hexanol. This led to an increase in their ocular, nasal, and respiratory symptoms, a decrease in nasal patency, and slight airway obstruction after 2 days of reexposure, possibly related to neutrophilic inflammation, after a 4-month exposure-free period.

PMID:
20146997
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk