Format

Send to:

Choose Destination
See comment in PubMed Commons below
Tohoku J Exp Med. 2010 Feb;220(2):107-13.

Increase in the heart rate variability with deep breathing in diabetic patients after 12-month exercise training.

Author information

  • 1Department of Physiology, Kasturba Medical College, Mangalore, India.

Abstract

Autonomic neuropathy in diabetes leads to impaired regulation of blood pressure and heart rate variability (HRV), which is due to a shift in cardiac autonomic balance towards sympathetic dominance. Lower HRV has been considered a predictor of cardiac mortality and morbidity. Deep breathing test is a simple method to measure HRV and it provides a sensitive measure of cardiac autonomic function. The effect of long-term physical activity on HRV in type-2 diabetes mellitus is inconclusive. We aimed to evaluate the effects of regular physical exercise on HRV with deep breathing in type 2 diabetes (n = 105). Thirty normotensive diabetic patients and 25 hypertensive diabetic patients underwent physical exercise program for 12 months, and the other 50 patients (22 normotensive and 28 hypertensive diabetic patients) were considered the non-exercised group. Electrocardiogram was recorded during deep breathing and HRV was measured. Regular exercise significantly increased HRV in diabetic patients with and without hypertension. The degree of the increase in HRV was greater in hypertensive diabetic patients (p < 0.01) than in normotensive diabetic patients (p < 0.05). After exercise, glycosylated hemoglobin levels were decreased in both groups of diabetic patients. Moreover, the hypertensive diabetic patients showed a decrease (p < 0.05) in blood pressure after regular exercise. Thus, regular exercise training increases HRV, suggesting that there is a shift in the cardiac sympathovagal balance in favor of parasympathetic dominance in diabetic patients. Long-term physical training may be an effective means to reverse the autonomic dysregulation seen in type 2 diabetes.

PMID:
20139661
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk