Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Genetics. 2010 Apr;184(4):985-97. doi: 10.1534/genetics.109.113662. Epub 2010 Feb 5.

Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae.

Author information

  • 1Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Gene amplification, a process that increases the copy number of a gene or a genomic region to two or more, is utilized by many organisms in response to environmental stress or decreased levels of a gene product. Our previous studies in Saccharomyces cerevisiae identified the amplification of a histone H2A-H2B gene pair, HTA2-HTB2, in response to the deletion of the other H2A-H2B gene pair, HTA1-HTB1. This amplification arises from a recombination event between two flanking Ty1 elements to form a new, stable circular chromosome and occurs at a frequency higher than has been observed for other Ty1-Ty1 recombination events. To understand the regulation of this amplification event, we screened the S. cerevisiae nonessential deletion set for mutations that alter the amplification frequency. Among the deletions that increase HTA2-HTB2 amplification frequency, we identified those that either decrease DNA replication fork progression (rrm3Delta, dpb3Delta, dpb4Delta, and clb5Delta) or that reduce histone H3-H4 levels (hht2-hhf2Delta). These two classes are related because reduced histone H3-H4 levels increase replication fork pauses, and impaired replication forks cause a reduction in histone levels. Consistent with our mutant screen, we found that the introduction of DNA replication stress by hydroxyurea induces the HTA2-HTB2 amplification event. Taken together, our results suggest that either reduced histone levels or slowed replication forks stimulate the HTA2-HTB2 amplification event, contributing to the restoration of normal chromatin structure.

PMID:
20139344
[PubMed - indexed for MEDLINE]
PMCID:
PMC2865932
Free PMC Article

Images from this publication.See all images (6)Free text

F igure  1.—
F igure  2.—
F igure  3.—
F igure  4.—
F igure  5.—
F igure  6.—
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk