Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Bacteriol. 2010 Apr;192(8):2266-76. doi: 10.1128/JB.01659-09. Epub 2010 Feb 5.

Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis.

Author information

  • 1Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France.

Abstract

Streptococcus gallolyticus (formerly known as Streptococcus bovis biotype I) is an increasing cause of endocarditis among streptococci and frequently associated with colon cancer. S. gallolyticus is part of the rumen flora but also a cause of disease in ruminants as well as in birds. Here we report the complete nucleotide sequence of strain UCN34, responsible for endocarditis in a patient also suffering from colon cancer. Analysis of the 2,239 proteins encoded by its 2,350-kb-long genome revealed unique features among streptococci, probably related to its adaptation to the rumen environment and its capacity to cause endocarditis. S. gallolyticus has the capacity to use a broad range of carbohydrates of plant origin, in particular to degrade polysaccharides derived from the plant cell wall. Its genome encodes a large repertoire of transporters and catalytic activities, like tannase, phenolic compounds decarboxylase, and bile salt hydrolase, that should contribute to the detoxification of the gut environment. Furthermore, S. gallolyticus synthesizes all 20 amino acids and more vitamins than any other sequenced Streptococcus species. Many of the genes encoding these specific functions were likely acquired by lateral gene transfer from other bacterial species present in the rumen. The surface properties of strain UCN34 may also contribute to its virulence. A polysaccharide capsule might be implicated in resistance to innate immunity defenses, and glucan mucopolysaccharides, three types of pili, and collagen binding proteins may play a role in adhesion to tissues in the course of endocarditis.

PMID:
20139183
[PubMed - indexed for MEDLINE]
PMCID:
PMC2849448
Free PMC Article

Images from this publication.See all images (4)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk