Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5522-7. doi: 10.1073/pnas.0909169107. Epub 2010 Jan 19.

Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.

Author information

  • 1Abteilung für Genetik and Abteilung für Bioinformatik, Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, D- 45117 Essen, Germany.

Abstract

Boundaries between euchromatic and heterochromatic regions until now have been associated with chromatin-opening activities. Here, we identified an unexpected role for histone deacetylation in this process. Significantly, the histone deacetylase (HDAC) Rpd3 was necessary for boundary formation in Saccharomyces cerevisiae. rpd3Delta led to silent information regulator (SIR) spreading and repression of subtelomeric genes. In the absence of a known boundary factor, the histone acetyltransferase complex SAS-I, rpd3Delta caused inappropriate SIR spreading that was lethal to yeast cells. Notably, Rpd3 was capable of creating a boundary when targeted to heterochromatin. Our data suggest a mechanism for boundary formation whereby histone deacetylation by Rpd3 removes the substrate for the HDAC Sir2, so that Sir2 no longer can produce O-acetyl-ADP ribose (OAADPR) by consumption of NAD(+) in the deacetylation reaction. In essence, OAADPR therefore is unavailable for binding to Sir3, preventing SIR propagation.

PMID:
20133733
[PubMed - indexed for MEDLINE]
PMCID:
PMC2851772
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk