Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Surgery. 2010 Jul;148(1):110-8. doi: 10.1016/j.surg.2009.12.006. Epub 2010 Feb 4.

Postischemic poly (ADP-ribose) polymerase (PARP) inhibition reduces ischemia reperfusion injury in a hind-limb ischemia model.

Author information

  • 1Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.

Abstract

BACKGROUND:

Several experiments were designed to determine whether the systemic, postischemic administration of PJ34,which is a poly-adenosine diphosphate (ADP)-ribose polymerase inhibitor, decreased tissue injury and inflammation after hind-limb ischemia reperfusion (I/R).

METHODS:

C57BL6 mouse limbs were subjected to 1.5 h ischemia followed by 24-h reperfusion. The treatment group (PJ) received intraperitoneal PJ34 (30 mg/kg) immediately before reperfusion, as well as 15 min and 2 h into reperfusion. The control group (CG) received lactated Ringer's alone at the same time intervals as PJ34 administration. The skeletal muscle levels of adenosine triphosphate (ATP), macrophage inflammatory protein-2 (MIP-2), keratinocyte derived chemokine (KC), and myeloperoxidase (MPO) were measured. Quantitative measurement of skeletal muscle tissue injury was assessed by microscopic analysis of fiber injury.

RESULTS:

ATP levels were higher in limbs of PJ versus CG mice (absolute ATP: 4.7 +/- 0.35 vs 2.3 +/- 0.15-ng/mg tissue, P = .002). The levels of MIP-2, KC, and MPO were lower in PJ versus CG mice (MIP-2: 1.4 +/- 0.34 vs 3.67 +/- 0.67-pg/mg protein, P = .014; KC: 4.97 +/- 0.97 vs 12.65 +/- 3.05-pg/mg protein, P = .037; MPO: 46.27 +/- 10.53 vs 107.34 +/- 13.58-ng/mg protein, P = .008). Muscle fiber injury was markedly reduced in PJ versus CG mice (4.25 +/- 1.9% vs 22.68 +/- 3.0% total fibers, P = .0004).

CONCLUSION:

Systemic postischemic administration of PJ34 preserved skeletal muscle energy levels, decreased inflammatory markers, and preserved tissue viability post-I/R. These results support PARP inhibition as a viable treatment for skeletal muscle I/R in a clinically relevant post hoc scenario.

Copyright 2010 Mosby, Inc. All rights reserved.

PMID:
20132957
[PubMed - indexed for MEDLINE]
PMCID:
PMC2886175
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk