Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant J. 2010 May;62(3):357-66. doi: 10.1111/j.1365-313X.2010.04160.x. Epub 2010 Feb 1.

A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death.

Author information

  • 1Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.

Abstract

Evasion or active suppression of host defenses are critical strategies employed by biotrophic phytopathogens and hemibiotrophs whose infection mechanism includes sequential biotrophic and necrotrophic stages. Although defense suppression by secreted effector proteins has been well studied in bacteria, equivalent systems in fungi and oomycetes are poorly understood. We report the characterization of SNE1 (suppressor of necrosis 1), a gene encoding a secreted protein from the hemibiotrophic oomycete Phytophthora infestans that is specifically expressed at the transcriptional level during biotrophic growth within the host plant tomato (Solanum lycopersicum). Using transient expression assays, we show that SNE1 suppresses the action of secreted cell death-inducing effectors from Phytophthora that are expressed during the necrotrophic growth phase, as well as programmed cell death mediated by a range of Avr-R protein interactions. We also report that SNE1 contains predicted NLS motifs and translocates to the plant nucleus in transient expression studies. A conceptual model is presented in which the sequential coordinated secretion of antagonistic effectors by P. infestans first suppresses, but then induces, host cell death, thereby providing a highly regulated means to control the transition from biotrophy to necrotrophy.

Comment in

PMID:
20128886
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk