Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pharm Res. 2010 Jun;27(6):979-88. doi: 10.1007/s11095-010-0055-4. Epub 2010 Jan 30.

Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer.

Author information

  • 1Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India. smhadi@vsnl.com

Abstract

Plant polyphenols are important components of human diet, and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring anti-oxidants but also act as pro-oxidants catalyzing DNA degradation in the presence of metal ions such as copper. The plant polyphenol resveratrol confers resistance to plants against fungal agents and has been implicated as a cancer chemopreventive agent. Of particular interest is the observation that resveratrol has been found to induce apoptosis in cancer cell lines but not in normal cells. Over the last few years, we have shown that resveratrol is capable of causing DNA breakage in cells such as human lymphocytes. Such cellular DNA breakage is inhibited by copper specific chelators but not by iron and zinc chelating agents. Similar results are obtained by using permeabilized cells or with isolated nuclei, indicating that chromatin-bound copper is mobilized in this reaction. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and resveratrol to generate reactive oxygen species responsible for DNA cleavage. The results are in support of our hypothesis that anti-cancer mechanism of plant polyphenols involves mobilization of endogenous copper and the consequent pro-oxidant action. Such a mechanism better explains the anti-cancer effects of resveratrol, as it accounts for the preferential cytotoxicity towards cancer cells.

PMID:
20119749
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk