Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2859-63.

Prediction of the thermodynamics of protein unfolding: the helix-coil transition of poly(L-alanine).

Author information

  • 1Kyoto Women's University, Japan.


The method given earlier for predicting the thermodynamics of protein unfolding from the x-ray structure of a protein is applied here to the poly(L-alanine) helix. First, the fitting parameters derived earlier from a data base of 10 proteins were used to predict the unfolding thermodynamics of 4 other proteins. The agreement between the observed and predicted values is comparable to that found for the 10 proteins studied initially. Next, the temperature dependences of the Gibbs energy and enthalpy changes for unfolding of bacteriophage T4 lysozyme were predicted and compared with data in the literature. The predicted and observed temperature dependences are similar and the predicted results indicate that cold denaturation should be observed at low temperatures, as observed recently for a T4 lysozyme mutant. The fitting parameters derived from thermodynamic data for protein unfolding and for hydration of model compounds were used to predict the unfolding thermodynamics of the poly(L-alanine) helix. The results predict that helix formation is enthalpy-driven, and the predicted enthalpy change for unfolding (0.86 kcal per mol per residue) is close to the value found in a recent calorimetric study of a 50-residue alanine-rich helix.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk