Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2010 May 1;50(4):1427-37. doi: 10.1016/j.neuroimage.2010.01.064. Epub 2010 Jan 28.

A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T).

Collaborators (224)

Weiner M, Aisen P, Weiner M, Aisen P, Petersen R, Jack CR Jr, Jagust W, Trojanowki J, Toga AW, Beckett L, Green RC, Gamst A, Saykin AJ, Morris J, Potter WZ, Green RC, Montine T, Petersen R, Aisen P, Gamst A, Thomas RG, Donohue M, Walter S, Jack CR Jr, Dale A, Bernstein M, Felmlee J, Fox N, Thompson P, Schuff N, Alexander G, DeCarli C, Jagust W, Bandy D, Koeppe RA, Foster N, Reiman EM, Chen K, Mathis C, Morris J, Cairns NJ, Taylor-Reinwald L, Trojanowki J, Shaw L, Lee VM, Korecka M, Toga AW, Crawford K, Neu S, Beckett L, Harvey D, Gamst A, Kornak J, Saykin AJ, Foroud TM, Potkin S, Shen L, Kachaturian Z, Frank R, Snyder PJ, Molchan S, Kaye J, Dolen S, Quinn J, Schneider L, Pawluczyk S, Spann BM, Brewer J, Vanderswag H, Heidebrink JL, Lord JL, Petersen R, Johnson K, Doody RS, Villanueva-Meyer J, Chowdhury M, Stern Y, Honig LS, Bell KL, Morris JC, Mintun MA, Schneider S, Marson D, Griffith R, Clark D, Grossman H, Tang C, Marzloff G, deToledo-Morrell L, Shah RC, Duara R, Varon D, Roberts P, Albert MS, Kozauer N, Zerrate M, Rusinek H, de Leon MJ, De Santi SM, Doraiswamy PM, Petrella JR, Aiello M, Arnold S, Karlawish JH, Wolk D, Smith CD, Given CA 2nd, Hardy P, Lopez OL, Oakley M, Simpson DM, Ismail MS, Brand C, Richard J, Mulnard RA, Thai G, Mc-Adams-Ortiz C, Diaz-Arrastia R, Martin-Cook K, DeVous M, Levey AI, Lah JJ, Cellar JS, Burns JM, Anderson HS, Laubinger MM, Apostolova L, Silverman DH, Lu PH, Graff-Radford NR, Parfitt F, Johnson H, Farlow M, Herring S, Hake AM, van Dyck CH, MacAvoy MG, Benincasa AL, Chertkow H, Bergman H, Hosein C, Black S, Stefanovic B, Caldwell C, Hsiung GY, Feldman H, Assaly M, Kertesz A, Rogers J, Trost D, Bernick C, Munic D, Wu CK, Johnson N, Mesulam M, Sadowsky C, Martinez W, Villena T, Turner RS, Johnson K, Reynolds B, Sperling RA, Rentz DM, Johnson KA, Rosen A, Tinklenberg J, Ashford W, Sabbagh M, Connor D, Jacobson S, Killiany R, Norbash A, Nair A, Obisesan TO, Jayam-Trouth A, Wang P, Lerner A, Hudson L, Ogrocki P, DeCarli C, Fletcher E, Carmichael O, Kittur S, Borrie M, Lee TY, Bartha R, Johnson S, Asthana S, Carlsson CM, Potkin SG, Preda A, Nguyen D, Tariot P, Fleisher A, Reeder S, Bates V, Capote H, Rainka M, Hendin BA, Scharre DW, Kataki M, Zimmerman EA, Celmins D, Brown AD, Pearlson G, Blank K, Anderson K, Saykin AJ, Santulli RB, Englert J, Williamson JD, Sink KM, Watkins F, Ott BR, Stopa E, Tremont G, Salloway S, Malloy P, Correia S, Rosen HJ, Miller BL, Mintzer J, Longmire CF, Spicer K.

Author information

  • 1Division of Neuroscience and Mental Health, MRC Clinical Sciences Centre, Imperial College London, London, UK.

Abstract

As population-based studies may obtain images from scanners with different field strengths, a method to normalize regional brain volumes according to intracranial volume (ICV) independent of field strength is needed. We found systematic differences in ICV estimation, tested in a cohort of healthy subjects (n=5) that had been imaged using 1.5T and 3T scanners, and confirmed in two independent cohorts. This was related to systematic differences in the intensity of cerebrospinal fluid (CSF), with higher intensities for CSF located in the ventricles compared with CSF in the cisterns, at 3T versus 1.5T, which could not be removed with three different applied bias correction algorithms. We developed a method based on tissue probability maps in MNI (Montreal Neurological Institute) space and reverse normalization (reverse brain mask, RBM) and validated it against manual ICV measurements. We also compared it with alternative automated ICV estimation methods based on Statistical Parametric Mapping (SPM5) and Brain Extraction Tool (FSL). The proposed RBM method was equivalent to manual ICV normalization with a high intraclass correlation coefficient (ICC=0.99) and reliable across different field strengths. RBM achieved the best combination of precision and reliability in a group of healthy subjects, a group of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) and can be used as a common normalization framework.

2010 Elsevier Inc. All rights reserved.

PMID:
20114082
[PubMed - indexed for MEDLINE]
PMCID:
PMC2883144
Free PMC Article

Images from this publication.See all images (8)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk