Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2010 Mar 10;10(3):1082-7. doi: 10.1021/nl100161z.

Light trapping in silicon nanowire solar cells.

Author information

  • 1Department of Chemistry, University of California, Berkeley, California 94720, USA.

Abstract

Thin-film structures can reduce the cost of solar power by using inexpensive substrates and a lower quantity and quality of semiconductor material. However, the resulting short optical path length and minority carrier diffusion length necessitates either a high absorption coefficient or excellent light trapping. Semiconducting nanowire arrays have already been shown to have low reflective losses compared to planar semiconductors, but their light-trapping properties have not been measured. Using optical transmission and photocurrent measurements on thin silicon films, we demonstrate that ordered arrays of silicon nanowires increase the path length of incident solar radiation by up to a factor of 73. This extraordinary light-trapping path length enhancement factor is above the randomized scattering (Lambertian) limit (2n(2) approximately 25 without a back reflector) and is superior to other light-trapping methods. By changing the silicon film thickness and nanowire length, we show that there is a competition between improved absorption and increased surface recombination; for nanowire arrays fabricated from 8 mum thick silicon films, the enhanced absorption can dominate over surface recombination, even without any surface passivation. These nanowire devices give efficiencies above 5%, with short-circuit photocurrents higher than planar control samples.

PMID:
20108969
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk