Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2010 Feb 15;44(4):1484-9. doi: 10.1021/es9030497.

Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes.

Author information

  • 1Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, USA.

Abstract

The antimicrobial activity of ZnO nanoparticles (NPs) was investigated under aquatic and aerosol exposure modes. ZnO NPs in aquatic media aggregated to micrometer-sized particles and did not interact with microorganisms effectively. Hence, the inhibition of microbial growth by nano-ZnO NPs (e.g., Mycobacterium smegmatis and Cyanothece 51142) in aquatic media was mainly attributable to dissolved zinc species. Shewanella oneidensis MR-1 and Escherichia coli were able to produce large amounts of extracellular polymeric substances, and their growth was not inhibited by ZnO NPs in aquatic media, even at high concentrations (>40 mg/L). On the other hand, when ZnO NPs were electrosprayed onto an E. coli biofilm so that NPs could be directly deposited onto the cell surface, the aerosol exposure dramatically reduced cellular viability. For example, an electrospray of ZnO NPs (20 nm) reduced the total number of viable E.coli cells by 57% compared to the control case, in which we electrosprayed only the buffer solution. However, electrospraying large-sized ZnO particles (480 nm) or nonsoluble TiO(2) NPs (20 nm) caused much less lethality to E. coli cells. The above observation implies that the aerosol method of exposing ZnO NPs to biological systems appears to have a much higher antimicrobial activity, and thus may lead to practical applications of employing a novel antimicrobial agent for airborne disease control.

PMID:
20102184
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk