Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Cell Biol. 2010 Feb;12(2):170-6. doi: 10.1038/ncb2020. Epub 2010 Jan 24.

Planar polarization of node cells determines the rotational axis of node cilia.

Author information

  • 1Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan.

Abstract

Rotational movement of the node cilia generates a leftward fluid flow in the mouse embryo because the cilia are posteriorly tilted. However, it is not known how anterior-posterior information is translated into the posterior tilt of the node cilia. Here, we show that the basal body of node cilia is initially positioned centrally but then gradually shifts toward the posterior side of the node cells. Positioning of the basal body and unidirectional flow were found to be impaired in compound mutant mice lacking Dvl genes. Whereas the basal body was normally positioned in the node cells of Wnt3a(-/-) embryos, inhibition of Rac1, a component of the noncanonical Wnt signalling pathway, impaired the polarized localization of the basal body in wild-type embryos. Dvl2 and Dvl3 proteins were found to be localized to the apical side of the node cells, and their location was polarized to the posterior side of the cells before the posterior positioning of the basal body. These results suggest that posterior positioning of the basal body, which provides the posterior tilt to node cilia, is determined by planar polarization mediated by noncanonical Wnt signalling.

PMID:
20098415
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk