Display Settings:

Format

Send to:

Choose Destination
Antimicrob Agents Chemother. 2010 Apr;54(4):1603-12. doi: 10.1128/AAC.01625-09. Epub 2010 Jan 19.

Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus.

Author information

  • 1The Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Ave., Box 172, New York, NY 10065, USA. vaf@rockefeller.edu

Abstract

Staphylococcus aureus is the causative agent of several serious infectious diseases. The emergence of antibiotic-resistant S. aureus strains has resulted in significant treatment difficulties, intensifying the need for new antimicrobial agents. Toward this end, we have developed a novel chimeric bacteriophage (phage) lysin that is active against staphylococci, including methicillin-resistant S. aureus (MRSA). The chimeric lysin (called ClyS) was obtained by fusing the N-terminal catalytic domain of the S. aureus Twort phage lysin with the C-terminal cell wall-targeting domain from another S. aureus phage lysin (phiNM3), which displayed Staphylococcus-specific binding. ClyS was expressed in Escherichia coli, and the purified protein lysed MRSA, vancomycin-intermediate strains of S. aureus (VISA), and methicillin-sensitive (MSSA) strains of S. aureus in vitro. In a mouse nasal decolonization model, a 2-log reduction in the viability of MRSA cells was seen 1 h following a single treatment with ClyS. One intraperitoneal dose of ClyS also protected against death by MRSA in a mouse septicemia model. ClyS showed a typical pattern of synergistic interactions with both vancomycin and oxacillin in vitro. More importantly, ClyS and oxacillin at doses that were not protective individually protected synergistically against MRSA septic death in a mouse model. These results strongly support the development of ClyS as an attractive addition to the current treatment options of multidrug-resistant S. aureus infections and would allow for the reinstatement of antibiotics shelved because of mounting resistance.

PMID:
20086153
[PubMed - indexed for MEDLINE]
PMCID:
PMC2849374
Free PMC Article

Images from this publication.See all images (9)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk