Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Struct Mol Biol. 2010 Feb;17(2):165-72. doi: 10.1038/nsmb.1765. Epub 2010 Jan 17.

Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35.

Author information

  • 1Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA.

Abstract

Ebola viral protein 35 (VP35), encoded by the highly pathogenic Ebola virus, facilitates host immune evasion by antagonizing antiviral signaling pathways, including those initiated by RIG-I-like receptors. Here we report the crystal structure of the Ebola VP35 interferon inhibitory domain (IID) bound to short double-stranded RNA (dsRNA), which together with in vivo results reveals how VP35-dsRNA interactions contribute to immune evasion. Conserved basic residues in VP35 IID recognize the dsRNA backbone, whereas the dsRNA blunt ends are 'end-capped' by a pocket of hydrophobic residues that mimic RIG-I-like receptor recognition of blunt-end dsRNA. Residues critical for RNA binding are also important for interferon inhibition in vivo but not for viral polymerase cofactor function of VP35. These results suggest that simultaneous recognition of dsRNA backbone and blunt ends provides a mechanism by which Ebola VP35 antagonizes host dsRNA sensors and immune responses.

PMID:
20081868
[PubMed - indexed for MEDLINE]
PMCID:
PMC2872155
Free PMC Article

Publication Types, MeSH Terms, Substances, Secondary Source ID, Grant Support

Publication Types

MeSH Terms

Substances

Secondary Source ID

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk