Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1553-8. doi: 10.1073/pnas.0913517107. Epub 2010 Jan 4.

MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma.

Author information

  • 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.

Abstract

MYCN, a proto-oncogene normally expressed in the migrating neural crest, is in its amplified state a key factor in the genesis of human neuroblastoma (NB). However, the mechanisms underlying MYCN-mediated NB progression are poorly understood. Here, we present a MYCN-induced miRNA signature in human NB involving the activation and transrepression of several miRNA genes from paralogous clusters. Several family members derived from the miR-17 approximately 92 cluster, including miR-18a and miR-19a, were among the up-regulated miRNAs. Expression analysis of these miRNAs in NB tumors confirmed increased levels in MYCN-amplified samples. Specifically, we show that miR-18a and miR-19a target and repress the expression of estrogen receptor-alpha (ESR1), a ligand-inducible transcription factor implicated in neuronal differentiation. Immunohistochemical staining demonstrated ESR1 expression in human fetal sympathetic ganglia, suggesting a role for ESR1 during sympathetic nervous system development. Concordantly, lentiviral restoration of ESR1 in NB cells resulted in growth arrest and neuronal differentiation. Moreover, lentiviral-mediated inhibition of miR-18a in NB cells led to severe growth retardation, outgrowth of varicosity-containing neurites, and induction of neuronal sympathetic differentiation markers. Bioinformatic analyses of microarray data from NB tumors revealed that high ESR1 expression correlates with increased event-free survival in NB patients and favorable disease outcome. Thus, MYCN amplification may disrupt estrogen signaling sensitivity in primitive sympathetic cells through deregulation of ESR1, thereby preventing the normal induction of neuroblast differentiation. Collectively, our findings demonstrate the molecular consequences of abnormal miRNA transcription in a MYCN-driven tumor and offer unique insights into the pathology underlying MYCN-amplified NB.

PMID:
20080637
[PubMed - indexed for MEDLINE]
PMCID:
PMC2824410
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk