Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Mar 12;285(11):7938-46. doi: 10.1074/jbc.M109.089235. Epub 2010 Jan 14.

Phosphoinositide-dependent protein kinase (PDK) activity regulates phosphatidylinositol 3,4,5-trisphosphate-dependent and -independent protein kinase B activation and chemotaxis.

Author information

  • 1Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.


Chemotactic cells must sense shallow extracellular gradients and produce localized intracellular responses. We previously showed that the temporal and spatial activation of two protein kinase B (PKB) homologues, PkbA and PkbR1, in Dictyostelium discoideum by phosphorylation of activation loops (ALs) and hydrophobic motifs had important roles in chemotaxis. We found that hydrophobic motif phosphorylation depended on regulation of TorC2 (target of rapamycin complex 2); however, the regulation of AL phosphorylation remains to be determined at a molecular level. Here, we show that two PDK (phosphoinositide-dependent protein kinase) homologues, PdkA and PdkB, function as the key AL kinases. Cells lacking both PdkA and PdkB are defective in PKB activation, chemotaxis, and fruiting body formation upon nutrient deprivation. The pleckstrin homology domain of PdkA is sufficient to localize it to the membrane, but transient activation of PdkA is independent of PIP(3) as well as TorC2 and dispensable for full function. These results confirm the importance of the TorC2-PDK-PKB pathway in chemotaxis and point to a novel mechanism of regulation of PDKs by chemoattractant.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk