Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Circulation. 2010 Jan 26;121(3):436-44. doi: 10.1161/CIRCULATIONAHA.109.902890. Epub 2010 Jan 11.

Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-alpha induction contributes to increased soluble endoglin production in preeclampsia.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA.

Abstract

BACKGROUND:

Preeclampsia is a prevalent life-threatening hypertensive disorder of pregnancy. The circulating antiangiogenic factor, soluble endoglin (sEng), is elevated in the blood circulation of women with preeclampsia and contributes to disease pathology; however, the underlying mechanisms responsible for its induction in preeclampsia are unknown.

METHODS AND RESULTS:

Here, we discovered that a circulating autoantibody, the angiotensin receptor agonistic autoantibody (AT(1)-AA), stimulates sEng production via AT(1) angiotensin receptor activation in pregnant mice but not in nonpregnant mice. We subsequently demonstrated that the placenta is a major source contributing to sEng induction in vivo and that AT(1)-AA-injected pregnant mice display impaired placental angiogenesis. Using drug screening, we identified tumor necrosis factor-alpha as a circulating factor increased in the serum of autoantibody-injected pregnant mice contributing to AT(1)-AA-mediated sEng induction in human umbilical vascular endothelial cells. Subsequently, among all the drugs screened, we found that hemin, an inducer of heme oxygenase, functions as a break to control AT(1)-AA-mediated sEng induction by suppressing tumor necrosis factor-alpha signaling in human umbilical vascular endothelial cells. Finally, we demonstrated that the AT(1)-AA-mediated decreased angiogenesis seen in human placenta villous explants was attenuated by tumor necrosis factor-alpha-neutralizing antibodies, soluble tumor necrosis factor-alpha receptors, and hemin by abolishing both sEng and soluble fms-like tyrosine kinase-1 induction.

CONCLUSIONS:

Our findings demonstrate that AT(1)-AA-mediated tumor necrosis factor-alpha induction, by overcoming its negative regulator, heme oxygenase-1, is a key underlying mechanism responsible for impaired placental angiogenesis by inducing both sEng and soluble fms-like tyrosine kinase-1 secretion from human villous explants. Our results provide important new targets for diagnosis and therapeutic intervention in the management of preeclampsia.

PMID:
20065159
[PubMed - indexed for MEDLINE]
PMCID:
PMC2844327
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk