Reciprocal regulation of natriuretic peptide receptors by insulin in adipose cells

Biochem Biophys Res Commun. 2010 Jan 29;392(1):100-5. doi: 10.1016/j.bbrc.2010.01.008. Epub 2010 Jan 6.

Abstract

Atrial- and brain-type natriuretic peptides (ANP and BNP, respectively) have been shown to exert potent lipolytic action in adipocytes. A family of natriuretic peptide receptors (NPRs), NPR-1, NPR-2, and NPR-3, mediates their physiologic effects. NPR-1 and NPR-2 are receptor guanylyl cyclases, while NPR-3 lacks enzymatic activity and functions primarily as a clearance receptor for natriuretic peptides. ANP has a high affinity for NPR-1 and NPR-3 than other natriuretic peptides. There is a possibility that ANP may exhibit its lipolytic effect through the balance of NPR-1 and NPR-3 expressions in adipocytes. However, the regulation of adipose NPRs has not been fully elucidated. We here examined the regulation of mouse adipose NPRs by insulin, an anti-lipolytic hormone. Among the insulin target organs, NPR-1 mRNA levels were higher in white adipose tissue (WAT) than in liver and skeletal muscle. NPR-3 mRNA was expressed most abundantly in WAT. Fasting condition induced NPR-1 mRNA level while suppressed NPR-3 mRNA level in WAT. Administration of streptozotocin resulted in the increase of NPR-1 mRNA level while the decrease of NPR-3 mRNA level in WAT. In ob/ob mice, hyperinsulinemic model, NPR-1 mRNA level was lower whereas NPR-3 mRNA level was higher compared to lean control mice. In 3T3-L1 adipocytes, insulin significantly reduced NPR-1 mRNA level while increased NPR-3 mRNA levels both through phosphatidylinositol 3-kinase (PI3-kinase) pathway. In summary, NPR-1 and NPR-3 were highly expressed in WAT and adipose NPR-1 and NPR-3 were reciprocally regulated by insulin. This study suggests that insulin may efficiently promote lipogenesis partly by reducing the lipolytic action of ANP through the opposite regulation of NPR-1 and NPR-3.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Adipocytes / drug effects
  • Adipocytes / metabolism
  • Adipose Tissue, White / drug effects
  • Adipose Tissue, White / metabolism*
  • Animals
  • Insulin / metabolism*
  • Insulin / pharmacology
  • Lipogenesis*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • RNA, Messenger / metabolism
  • Receptors, Atrial Natriuretic Factor / genetics
  • Receptors, Atrial Natriuretic Factor / metabolism*
  • Streptozocin / pharmacology
  • Tissue Distribution

Substances

  • Insulin
  • RNA, Messenger
  • brain natriuretic peptide receptor
  • Streptozocin
  • Receptors, Atrial Natriuretic Factor
  • atrial natriuretic factor receptor A
  • atrial natriuretic factor receptor B