Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bone Joint Surg Am. 2010 Jan;92(1):162-8. doi: 10.2106/JBJS.H.01679.

Cytotoxic effect of zoledronic acid-loaded bone cement on giant cell tumor, multiple myeloma, and renal cell carcinoma cell lines.

Author information

  • 1Department of Orthopaedic Surgery, University of Minnesota Medical School and Masonic Cancer Center, 2450 Riverside Avenue, R200, Minneapolis, MN 55454, USA.

Abstract

BACKGROUND:

Local recurrence with subsequent osteolysis is a problem after intralesional curettage of giant cell tumor of bone, myeloma, and metastatic carcinoma. The bisphosphonate zoledronic acid (zoledronate) has been shown to reduce osteoclast activity, and its local administration is a potentially attractive therapy, especially for the osteoclast-rich giant cell tumor. The aim of this study was to analyze the elution dynamics of zoledronic acid release from acrylic bone cement and its in vitro antitumor efficacy.

METHODS:

Various concentrations of zoledronic acid were mixed with bone cement and placed in distilled water. The concentration in the water was measured daily for fourteen days. The cytotoxic effects of the dissolved zoledronic acid on cultures of multiple myeloma, giant cell tumor, and renal cell carcinoma cells were tested with use of the MTT assay (tetrazolium [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] dye) and analyzed according to the zoledronic acid concentration and the elapsed time.

RESULTS:

The release of zoledronic acid was greatest during the first twenty-four hours for all concentrations and decreased rapidly during the next forty-eight hours to reach a plateau after four days. The proliferation assay (MTT) showed zoledronic acid to have significant cytotoxicity in cultures of stromal giant cell tumor, multiple myeloma, and renal cell carcinoma cells. In addition, zoledronic acid decreased the number of viable tumor cells in a dose-dependent manner. Renal cell carcinoma from bone (RBM1-IT4) and stromal giant cell tumor of bone were more susceptible to zoledronic acid than was multiple myeloma.

CONCLUSIONS:

The method presented in our study is a reproducible technique for evaluating zoledronic acid elution from bone cement and determining its impact on tumor growth. Zoledronic acid is released from bone cement, remains biologically active despite the polymerization of cement, and inhibits the in vitro growth of cell lines from giant cell tumor of bone, myeloma, and renal cell carcinoma.

PMID:
20048108
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk