Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Toxicol Mech Methods. 2007;17(9):541-57. doi: 10.1080/15376510701380505.

Mercury activates phospholipase a(2) and induces formation of arachidonic Acid metabolites in vascular endothelial cells.

Author information

  • 1Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States.

Abstract

ABSTRACT Currently, mercury has been identified as a risk factor in cardiovascular diseases among humans. Here, we tested our hypothesis that mercury modulates the activity of the vascular endothelial cell (EC) lipid signaling enzyme phospholipase A(2) (PLA(2)), which is an important player in the EC barrier functions. Monolayers of bovine pulmonary artery ECs (BPAECs) in culture, following labeling of membrane phospholipids with [(3)H]arachidonic acid (AA), were exposed to the inorganic form of mercury, mercury chloride, and the release of free AA (index of PLA(2) activity) and formation of AA metabolites were determined by liquid scintillation counting and enzyme immunoassay, respectively. Mercury chloride significantly activated PLA(2) in BPAECs in a dose-dependent (0 to 50 muM) and time-dependent (0 to 120 min) fashion. Metal chelators significantly attenuated mercury-induced PLA(2) activation, suggesting that cellular mercury-ligand interaction is required for the enzyme activation and that chelators are suitable blockers for mercury-induced PLA(2) activation in ECs. Sulfhydryl (thiol-protective) agents, calcium chelating agents, and cPLA(2)-specific inhibitor also significantly attenuated the mercury-induced PLA(2), suggesting the role of thiol and calcium in the activation of cPLA(2) in BPAECs. Significant formation of AA metabolites, including the release of total prostaglandins, thromboxane B(2), and 8-isoprostane, were observed in BPAECs following their exposure to mercury chloride. Mercury chloride induced cytotoxicity as observed by the altered cell morphology and enhanced trypan blue uptake, which was attenuated by the cPLA(2) inhibitor AACOCF(3). The results of this study revealed that inorganic mercury-induced PLA(2) activation through the thiol and calcium signaling and the formation of bioactive AA metabolites further demonstrated the association of PLA(2) with the cytotoxicity of mercury in ECs. Overall, the results of the current study underscore the importance of PLA(2) signaling in mercury-induced endothelial dysfunctions.

PMID:
20020881
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Informa Healthcare
    Loading ...
    Write to the Help Desk