Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Mar 15;266(8):4706-12.

Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.

Author information

  • 1Department of Biochemistry, University of Tennessee, Memphis 38163.


Based on our previous finding that desensitization of the insulin-responsive glucose transport system (GTS) requires three components, glucose, insulin, and glutamine, we postulated that the routing of incoming glucose through the hexosamine biosynthesis pathway plays a key role in the development of insulin resistance in primary cultured adipocytes. Two approaches were used to test this hypothesis. First, we assessed whether glucose-induced desensitization of the GTS could be prevented by glutamine analogs that irreversibly inactivate glutamine-requiring enzymes, such as glutamine:fructose-6-phosphate amidotransferase (GFAT) the first and the rate-limiting enzyme in hexosamine biosynthesis. Both O-diazoacetyl-L-serine (azaserine) and 6-diazo-5-oxonorleucine inhibited desensitization in 18-h treated cells without affecting maximal insulin responsiveness in control cells. Moreover, close agreement was seen between the ability of azaserine to prevent desensitization of the GTS in intact adipocytes (70% inhibition, ED50 = 1.1 microM), its ability to inactivate GFAT in intact adipocytes (64% inhibition, ED50 = 1.0 microM) and its ability to inactivate GFAT activity in a cytosolic adipocyte preparation (ED50 = 1.3 microM). From these results we concluded that a glutamine amidotransferase is involved in the induction of insulin resistance. As a second approach, we determined whether glucosamine, an agent known to preferentially enter the hexosamine pathway at a point distal to enzymatic amidation by GFAT, could induce cellular insulin resistance. When adipocytes were exposed to various concentrations of glucosamine for 5 h, progressive desensitization of the GTS was observed (ED50 = 0.36 mM) that culminated in a 40-50% loss of insulin responsiveness. Moreover, we estimated that glucosamine is at least 40 times more potent than glucose in mediating desensitization, since glucosamine entered adipocytes at only one-quarter of the glucose uptake rate, yet induced desensitization at an extra-cellular dose 10 times lower than glucose. In addition, we found that glucosamine-induced desensitization did not require glutamine and was unaffected by azaserine treatment. Thus, we conclude that glucosamine enters the hexosamine-desensitization pathway at a point distal to GFAT amidation. Overall, these studies indicate that a unique metabolic pathway exists in adipocytes that mediates desensitization of the insulin-responsive GTS, and reveal that an early step in this pathway involves the conversion of fructose 6-phosphate to glucosamine 6-phosphate by the first and rate-limiting enzyme of the hexosamine pathway, glutamine:fructose-6-phosphate amidotransferase.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk