Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):628-32. doi: 10.1073/pnas.0912852107. Epub 2009 Dec 17.

Beta-arrestin- but not G protein-mediated signaling by the "decoy" receptor CXCR7.

Author information

  • 1Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.

Abstract

Ubiquitously expressed seven-transmembrane receptors (7TMRs) classically signal through heterotrimeric G proteins and are commonly referred to as G protein-coupled receptors. It is now recognized that 7TMRs also signal through beta-arrestins, which act as versatile adapters controlling receptor signaling, desensitization, and trafficking. Most endogenous receptors appear to signal in a balanced fashion using both beta-arrestin and G protein-mediated pathways. Some 7TMRs are thought to be nonsignaling "decoys" because of their inability to activate typical G protein signaling pathways; it has been proposed that these receptors act to scavenge ligands or function as coreceptors. Here we demonstrate that ligand binding to the decoy receptor CXCR7 does not result in activation of signaling pathways typical of G proteins but does activate MAP kinases through beta-arrestins in transiently transfected cells. Furthermore, we observe that vascular smooth muscle cells that endogenously express CXCR7 migrate to its ligand interferon-inducible T-cell alpha chemoattractant (ITAC), an effect that is significantly attenuated by treatment with either a CXCR7 antagonist or beta-arrestin depletion by siRNA. This example of an endogenous "beta-arrestin-biased" 7TMR that signals through beta-arrestin in the absence of G protein activation demonstrates that some 7TMRs encoded in the genome have evolved to signal through beta-arrestin exclusively and suggests that other receptors that are currently thought to be orphans or decoys may also signal through such nonclassical pathways.

PMID:
20018651
[PubMed - indexed for MEDLINE]
PMCID:
PMC2818968
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk