Display Settings:

Format

Send to:

Choose Destination
Cell Cycle. 2010 Jan 1;9(1):104-20. Epub 2010 Jan 5.

Genome wide identification of Plasmodium falciparum helicases: a comparison with human host.

Author information

  • Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India. renu@icgeb.res.in

Abstract

Helicases are enzymes which catalyze the unwinding of nucleic acid substrate in an energy-dependent manner. These are characterized by the presence of nine well defined conserved motifs and are essential for almost all the processes involving nucleic acids. Plasmodium falciparum causes the most virulent form of malaria. The control of malaria is becoming complicated due to the spread of resistance of both the mosquito vector and the parasite to insecticides and anti-malarial drugs. Helicases could be used as feasible drug target for control of malaria. The P. falciparum genome is completely sequenced but the annotation is still in progress. To identify members of various well defined helicase families, I used the bioinformatics approach and helicase domain sequences to search the P. falciparum genome sequence database. In addition to the homologues for a number of human helicases, some novel parasite specific helicases were also identified. I describe the members of DEAD-box, DEAH box, RuvB, Superkiller family, RecQ and repair helicases from P. falciparum. The detailed studies of these helicases will help in identifying a specific enzyme, which could be used as potential target to control the replication and transmission of the malaria parasite.

Comment in

PMID:
20016272
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Landes Bioscience
    Loading ...
    Write to the Help Desk