Differential midgut attachment of Leishmania (Viannia) braziliensis in the sand flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia

J Biomed Biotechnol. 2010:2010:439174. doi: 10.1155/2010/439174.

Abstract

The interaction between Leishmania and sand flies has been demonstrated in many Old and New World species. Besides the morphological differentiation from procyclic to infective metacyclic promastigotes, the parasite undergoes biochemical transformations in its major surface lipophosphoglycan (LPG). An upregulation of beta-glucose residues was previously shown in the LPG repeat units from procyclic to metacyclic phase in Leishmania (Viannia) braziliensis, which has not been reported in any Leishmania species. LPG has been implicated as an adhesion molecule that mediates the interaction with the midgut epithelium of the sand fly in the Subgenus Leishmania. These adaptations were explored for the first time in a species from the Subgenus Viannia, L. (V.) braziliensis with its natural vectors Lutzomyia (Nyssomyia) intermedia and Lutzomyia (Nyssomyia) whitmani. Using two in vitro binding techniques, phosphoglycans (PGs) derived from procyclic and metacyclic parasites were able to bind to the insect midgut and inhibit L. braziliensis attachment. Interestingly, L. braziliensis procyclic parasite attachment was approximately 11-fold greater in the midgut of L. whitmani than in L. intermedia. The epidemiological relevance of L. whitmani as a vector of American Cutaneous Leishmaniasis (ACL) in Brazil is discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Digestive System / metabolism
  • Digestive System / parasitology
  • Glycosphingolipids / chemistry
  • Glycosphingolipids / isolation & purification
  • Glycosphingolipids / metabolism
  • Host-Parasite Interactions / physiology
  • Leishmania braziliensis / pathogenicity*
  • Life Cycle Stages
  • Microscopy, Fluorescence
  • Psychodidae / parasitology*

Substances

  • Glycosphingolipids
  • lipophosphonoglycan