Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2010 Mar 10;166(1):1-4. doi: 10.1016/j.neuroscience.2009.12.021. Epub 2009 Dec 13.

Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury.

Author information

  • 1Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

Abstract

Peripheral nerve injury causes a variety of alterations in pain-related gene expression in primary afferent, which underlie the neuronal plasticity in neuropathic pain. One of the characteristic alterations is a long-lasting downregulation of voltage-gated potassium (K(v)) channel, including K(v)4.3, in the dorsal root ganglion (DRG). The present study showed that nerve injury reduces the messenger RNA (mRNA) expression level of K(v)4.3 gene, which contains a conserved neuron-restrictive silencer element (NRSE), a binding site for neuron-restrictive silencer factor (NRSF). Moreover, we found that injury causes an increase in direct NRSF binding to K(v)4.3-NRSE in the DRG, using chromatin immunoprecipitation (ChIP) assay. ChIP assay further revealed that acetylation of histone H4, but not H3, at K(v)4.3-NRSE is markedly reduced at day 7 post-injury. Finally, the injury-induced K(v)4.3 downregulation was significantly blocked by antisense-knockdown of NRSF. Taken together, these data suggest that nerve injury causes an epigenetic silencing of K(v)4.3 gene mediated through transcriptional suppressor NRSF in the DRG.

Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

PMID:
20006971
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk