Display Settings:

Format

Send to:

Choose Destination
World J Gastroenterol. 2009 Dec 14;15(46):5813-20.

NT4(Si)-p53(N15)-antennapedia induces cell death in a human hepatocellular carcinoma cell line.

Author information

  • 1Department of Radiotherapy Oncology, First Hospital, Medical School of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi Province, China. slpwn@126.com

Abstract

AIM:

To construct the recombinant lentivirus expression plasmid, pLenti6/V5-NT4 p53(N15)-antennapedia (Ant), and study its effect on HepG2 cells.

METHODS:

Plasmid pLenti6/V5-NT4 p53(N15)-Ant was constructed incorporating the following functional regions, including signal peptide sequence and pro-region of neurotrophin 4, N-terminal residues 12-26 of p53 and 17 amino acid drosophila carrier protein, Ant. Hepatocellular carcinoma (HepG2) cells were used for transfection. 3-[4,5-dimethyl-thiazol-2yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, transmission electron microscopy (TEM) and flow cytometric analysis (FCM) were employed to investigate the effects of LV-NT4(Si)-p53(N15)-Ant in vitro on HepG2 cells. In vivo experiment was also performed to investigate the inhibitory effect of LV-NT4(Si)-p53(N15)-Ant on tumor growth in nude mice.

RESULTS:

LV-NT4(Si)-p53(N15)-Ant significantly suppressed the growth of HepG2 cells. MTT assay showed that the growth of HepG2 cells was mucj more significantly inhibited by LV-NT4(Si)-p53(N15)-Ant than by LV-EGFP. The inhibition rate for HepG2 cell growth in the two groups was 46.9% and 94.5%, respectively, 48 h after infection with LV-NT4(Si)-p53(N15)-Ant, and was 33.9% and 95.8%, respectively, 72 h after infection with LV-NT4(Si)-p53(N15)-Ant (P < 0.01). Light microscopy and TEM showed morphological changes in HepG2 cells infected with LV-NT4(Si)-p53(N15)-Ant, but no significant changes in HepG2 cells infected with LV-EGFP. Changes were observed in ultra-structure of HepG2 cells infected with LV-NT4(Si)-p53(N15)-Ant, with degraded membranes, resulting in necrosis. LDH release from HepG2 cells was analyzed at 24, 48, 72 and 96 h after infection with LV-NT4(Si)-p53(N15)-Ant and LV-EGFP, which showed that LDH release was significantly higher in LV-NT4(Si)-p53(N15)-Ant treatment group (682 IU/L) than in control group (45 IU/L, P < 0.01). The longer the time was after infection, the bigger the difference was in LDH release. FCM analysis showed that LV-NT4(Si)-p53(N15)-Ant could induce two different kinds of cell death: necrosis and apoptosis, with apoptosis being the minor type and necrosis being the main type, suggesting that LV-NT4(Si)-p53(N15)-Ant exerts its anticancer effect on HepG2 cells by inducing necrosis. The in vivo study showed that LV-NT4(Si)-p53(N15)-Ant significantly inhibited tumor growth with an inhibition rate of 66.14% in terms of tumor size and weight.

CONCLUSION:

LV-NT4(Si)-p53(N15)-Ant is a novel recombinant lentivirus expression plasmid and can be used in gene therapy for cancer.

PMID:
19998502
[PubMed - indexed for MEDLINE]
PMCID:
PMC2791274
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Baishideng Publishing Group Co., Limited Icon for PubMed Central
    Loading ...
    Write to the Help Desk