Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2009 Nov 23;17(24):22179-89. doi: 10.1364/OE.17.022179.

Geometry dependence of field enhancement in 2D metallic photonic crystals.

Author information

  • 1Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA.


Geometry dependence of surface plasmon resonance of 2D metallic photonic crystals (PCs) was assessed using rigorous 3D finite difference time domain analysis. PCs of noble metallic rectangular and cylindrical nanopillars in square and triangular lattices on thick noble metal film were simulated for maximum field enhancement. It was found that the period, size and thickness of the nanopillars can be tuned to excite of surface plasmons at desired wavelengths in visible and near-infrared ranges. Maximum electric field enhancement near the nanopillars was found to be greater than 10X. The detail analysis of PCs tuned for 750 nm wavelength showed that thickness of nanopillars was the most sensitive parameter for field enhancement, and triangular lattice PCs had the wider enhancement bandwidth than square lattice PCs. Results showed that these PCs are sensitive with incident angle (theta) but not with polarization angle (phi).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk