Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2009 Nov 23;17(24):21634-51. doi: 10.1364/OE.17.021634.

Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics.

Author information

  • 1Indiana University, School of Optometry, Bloomington IN 47405, USA. bcense@indiana.edu

Abstract

Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25 degrees/microm to 0.65 degrees/microm were found in the birefringent nerve fiber layer at 6 degrees eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date.

PMID:
19997405
[PubMed - indexed for MEDLINE]
PMCID:
PMC3113602
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America Icon for PubMed Central
    Loading ...
    Write to the Help Desk