Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2009 Nov 9;17(23):20891-9. doi: 10.1364/OE.17.020891.

Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.

Author information

  • 1Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 11 Science Park Road, Science Park-II, Singapore 117685.


Polycrystalline silicon (polySi) wire waveguides with width ranging from 200 to 500 nm are fabricated by solid-phase crystallization (SPC) of deposited amorphous silicon (a-Si) on SiO(2) at a maximum temperature of 1000 degrees C. The propagation loss at 1550 nm decreases from 13.0 to 9.8 dB/cm with the waveguide width shrinking from 500 to 300 nm while the 200-nm-wide waveguides exhibit quite large loss (>70 dB/cm) mainly due to the relatively rough sidewall of waveguides induced by the polySi dry etch. By modifying the process sequence, i.e., first patterning the a-Si layer into waveguides by dry etch and then SPC, the sidewall roughness is significantly improved but the polySi crystallinity is degraded, leading to 13.9 dB/cm loss in the 200-nm-wide waveguides while larger losses in the wider waveguides. Phosphorus implantation causes an additional loss in the polySi waveguides. The doping-induced optical loss increases relatively slowly with the phosphorus concentration increasing up to 1 x 10(18) cm(-3), whereas the 5 x 10(18) cm(-3) doped waveguides exhibit large loss due to the dominant free carrier absorption. For all undoped polySi waveguides, further 1-2 dB/cm loss reduction is obtained by a standard forming gas (10%H(2) + 90%N(2)) annealing owing to the hydrogen passivation of Si dangling bonds present in polySi waveguides, achieving the lowest loss of 7.9 dB/cm in the 300-nm-wide polySi waveguides. However, for the phosphorus doped polySi waveguides, the propagation loss is slightly increased by the forming gas annealing.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk