Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEBS J. 2010 Feb;277(3):540-9. doi: 10.1111/j.1742-4658.2009.07485.x. Epub 2009 Dec 3.

Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps--first come, first served?

Author information

  • 1Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.

Erratum in

  • FEBS J. 2010 Jun;277(12):2726.

Abstract

Multidrug resistance is a major challenge in the therapy of cancer and pathogenic fungal infections. More than three decades ago, P-glycoprotein was the first identified multidrug transporter. It has been studied extensively at the genetic and biochemical levels ever since. Pdr5, the most abundant ATP-binding cassette transporter in Saccharomyces cerevisiae, is highly homologous to azole-resistance-mediating multidrug transporters in fungal pathogens, and a focus of clinical drug resistance research. Despite functional equivalences, P-glycoprotein and Pdr5 exhibit striking differences in their architecture and mechanisms. In this minireview, we discuss the mechanisms of substrate selection and multidrug transport by comparing the fraternal twins P-glycoprotein and Pdr5. We propose that substrate selection in eukaryotic multidrug ATP-binding cassette transporters is not solely determined by structural features of the transmembrane domains but also by their dynamic behavior.

PMID:
19961541
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk